

Welcome to ceODBC’s documentation!

ceODBC is a Python extension module that enables access to databases using
the ODBC API and conforms to the Python database API 2.0 specifications with
a number of additions. See https://www.python.org/dev/peps/pep-0249 for more
information on the Python database API specification.

ceODBC is distributed under an open-source license (the
PSF license).

Contents:

	Module Interface
	Constants

	Exceptions

	Database Types

	Connection Object

	Cursor Object

	Variable Objects

	Release notes
	3.x releases

	Older versions

	License

Indices and tables

	Index

	Module Index

	Search Page

Module Interface

	
ceODBC.Binary(string)

	Construct an object holding a binary (long) string value. This is merely a
wrapper over the bytes class and that should be used instead.

	
ceODBC.Connection(dsn, autocommit=False)

	
ceODBC.connect(dsn, autocommit=False)

	Constructor for creating a connection. The only required
argument is the DSN in the format that ODBC expects. The autocommit flag can
be set in the constructor or it can be manipulated after the connection has
been established. If you are using a driver that does not handle
transactions, ensure that this value is set to True or you may get a “driver
not capable” exception.

	
ceODBC.Cursor(connection)

	Constructor for creating a cursor using the connection.

Note

This method is an extension to the DB API definition.

	
ceODBC.data_sources(exclude_user_dsn=False, exclude_system_dsn=False)

	Return a list of 2-tuples identifying the configured data sources. By
default all data sources are returned but system or user data sources can be
excluded, if desired.

Note

This method is an extension to the DB API definition.

	
ceODBC.Date(year, month, day)

	Construct an object holding a date value. This is merely a wrapper over the
datetime.date class and that should be used instead.

	
ceODBC.DateFromTicks(ticks)

	Construct an object holding a date value from the given ticks value (number
of seconds since the epoch; see the documentation of the standard Python
time module for details). This is equivalent to using
datetime.date.fromtimestamp() and that should be used instead.

	
ceODBC.drivers()

	Return a list of the names of the configured drivers.

Note

This method is an extension to the DB API definition.

	
ceODBC.Time(hour, minute, second)

	Construct an object holding a time value. This is merely a wrapper over the
datetime.time class and that should be used instead.

	
ceODBC.TimeFromTicks(ticks)

	Construct an object holding a time value from the given ticks value (number
of seconds since the epoch; see the documentation of the standard Python
time module for details). This is equivalent to using
datetime.datetime.fromtimestamp().time() and that should be used instead.

	
ceODBC.Timestamp(year, month, day, hour, minute, second)

	Construct an object holding a time stamp value. This is merely a wrapper
over the datetime.datetime class and that should be used instead.

	
ceODBC.TimestampFromTicks(ticks)

	Construct an object holding a time stamp value from the given ticks value
(number of seconds since the epoch; see the documentation of the standard
Python time module for details). This is equivalent to using
datetime.datetime.fromtimestamp() and that should be used instead.

Constants

	
ceODBC.apilevel

	String constant stating the supported DB API level. Currently ‘2.0’.

	
ceODBC.BINARY

	This type object is used to describe columns in a database that are binary.

	
ceODBC.DATETIME

	This type object is used to describe columns in a database that are dates.

	
ceODBC.NUMBER

	This type object is used to describe columns in a database that are numbers.

	
ceODBC.paramstyle

	String constant stating the type of parameter marker formatting expected by
the interface. Currently ‘qmark’ as in ‘where name = ?’.

	
ceODBC.ROWID

	This type object is used to describe the pseudo column “rowid”.

	
ceODBC.STRING

	This type object is used to describe columns in a database that are strings.

	
ceODBC.threadsafety

	Integer constant stating the level of thread safety that the interface
supports. Currently 2, which means that threads may share the module and
connections, but not cursors. Sharing means that a thread may use a
resource without wrapping it using a mutex semaphore to implement resource
locking.

	
ceODBC.__version__

	String constant stating the version of the module. Currently ‘3.1.0’.

Note

This attribute is an extension to the DB API definition.

Exceptions

	
exception ceODBC.Warning

	Exception raised for important warnings and defined by the DB API but not
actually used by ceODBC.

	
exception ceODBC.Error

	Exception that is the base class of all other exceptions defined by
ceODBC and is a subclass of the Python StandardError exception (defined in
the module exceptions).

	
exception ceODBC.InterfaceError

	Exception raised for errors that are related to the database interface
rather than the database itself. It is a subclass of Error.

	
exception ceODBC.DatabaseError

	Exception raised for errors that are related to the database. It is a
subclass of Error.

	
exception ceODBC.DataError

	Exception raised for errors that are due to problems with the processed
data. It is a subclass of DatabaseError.

	
exception ceODBC.OperationalError

	Exception raised for errors that are related to the operation of the
database but are not necessarily under the control of the progammer. It is a
subclass of DatabaseError.

	
exception ceODBC.IntegrityError

	Exception raised when the relational integrity of the database is affected.
It is a subclass of DatabaseError.

	
exception ceODBC.InternalError

	Exception raised when the database encounters an internal error. It is a
subclass of DatabaseError.

	
exception ceODBC.ProgrammingError

	Exception raised for programming errors. It is a subclass of DatabaseError.

	
exception ceODBC.NotSupportedError

	Exception raised when a method or database API was used which is not
supported by the database. It is a subclass of DatabaseError.

Database Types

Note

The DB API definition does not define these objects.

These types are more granular than the types mandated by the DB API and can
be used when creating variables via Cursor.var() or
Cursor.setinputsizes().

	
ceODBC.DB_TYPE_BIGINT

	Variable used to bind and/or fetch big integers. Values are returned as
Python integers and accept the same.

	
ceODBC.DB_TYPE_BINARY

	Variable used to bind and/or fetch binary data. Values are returned as
Python bytes objects and accept the same.

	
ceODBC.DB_TYPE_BIT

	Variable used to bind and/or fetch bits. Values are returned as Python
booleans and accept the same.

	
ceODBC.DB_TYPE_DATE

	Variable used to bind and/or fetch dates. Values are returned as Python
datetime.date objects and accept Python datetime.date or datetime.datetime
objects.

	
ceODBC.DB_TYPE_DECIMAL

	Variable used to bind and/or fetch decimal numbers. Values are returned as
Python decimal.Decimal objects and accept the same.

	
ceODBC.DB_TYPE_DOUBLE

	Variable used to bind and/or fetch floating point numbers. Values are
returned as Python floats and accept Python integers or floats.

	
ceODBC.DB_TYPE_INT

	Variable used to bind and/or fetch integers. Values are returned as Python
integers and accept the same.

	
ceODBC.DB_TYPE_LONG_BINARY

	Variable used to bind and/or fetch long binary data. Values are returned as
Python bytes objects and accept the same.

	
ceODBC.DB_TYPE_LONG_STRING

	Variable used to bind and/or fetch long string data. Values are returned as
Python strings and accept the same.

	
ceODBC.DB_TYPE_STRING

	Variable used to bind and/or fetch string data. Values are returned as
Python strings and accept the same.

	
ceODBC.DB_TYPE_TIME

	Variable used to bind and/or fetch time data. Values are returned as Python
datetime.time objects and accept Python datetime.time or datetime.datetime
objects.

	
ceODBC.DB_TYPE_TIMESTAMP

	Variable used to bind and/or fetch timestamps. Values are returned as Python
datetime.datetime objects and accept Python datetime.date or
datetime.datetime objects.

Connection Object

Note

Any outstanding changes will be rolled back when the connection object
is destroyed or closed.

	
Connection.__enter__()

	The entry point for the connection as a context manager.

Note

This method is an extension to the DB API definition.

	
Connection.__exit__()

	The exit point for the connection as a context manager. In the event of an
exception, the transaction is rolled back; otherwise, the transaction is
committed.

Note

This method is an extension to the DB API definition.

	
Connection.autocommit

	This read-write attribute returns the setting of the autocommit flag for the
connection. When set, any statements executed are automatically committed
if successful; otherwise, a commit() or rollback() must be issued for the
changes to be committed to (or rolled back from) the database.

Note

This attribute is an extension to the DB API definition.

	
Connection.close()

	Close the connection now, rather than whenever __del__ is called. The
connection will be unusable from this point forward; an Error exception will
be raised if any operation is attempted with the connection. The same
applies to any cursor objects trying to use the connection.

	
Connection.columnprivileges(catalog=None, schema=None, table=None, column=None)

	Return a cursor containing the privileges for columns in the catalog
filtered by the parameters catalog, schema, table and column as desired. See
the ODBC API reference for SQLColumnPrivileges() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.columns(catalog=None, schema=None, table=None, column=None)

	Return a cursor containing the columns in the catalog filtered by the
parameters catalog, schema, table and column as desired. See the ODBC API
reference for SQLColumns() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.commit()

	Commit any pending transactions to the database.

	
Connection.cursor()

	Return a new Cursor object (Cursor Object) using the connection.

	
Connection.dsn

	This read-only attribute returns the DSN of the database to which a
connection has been established.

Note

This attribute is an extension to the DB API definition.

	
Connection.inputtypehandler

	This read-write attribute specifies a method called for each value that is
bound to a statement executed on any cursor associated with this connection,
unless a different handler is specified for that cursor. The method
signature is handler(cursor, value, arraysize) and the return value is
expected to be a variable object or None in which case a default variable
object will be created. If this attribute is None, the default behavior will
take place for all values bound to statements.

Note

This attribute is an extension to the DB API definition.

	
Connection.foreignkeys(pkcatalog=None, pkschema=None, pktable=None, fkcatalog=None, fkschema=None, fktable=None)

	Return a cursor containing the foreign keys in the catalog filtered by the
parameters catalog, schema and table for both the primary and foreign key
table as desired. See the ODBC API reference for SQLForeignKeys() for more
information.

Note

This method is an extension to the DB API definition.

	
Connection.outputtypehandler

	This read-write attribute specifies a method called for each value that is
to be fetched from any cursor associated with this connection, unless a
different handler is specified for that cursor. The method signature is
handler(cursor, name, defaultType, length, scale) and the return value is
expected to be a variable object or None in which case a default variable
object will be created. If this attribute is None, the default behavior will
take place for all values fetched from cursors.

Note

This attribute is an extension to the DB API definition.

	
Connection.primarykeys(catalog=None, schema=None, table=None)

	Return a cursor containing the primary key columns in the catalog filtered
by the parameters catalog, schema and table as desired. See the ODBC API
reference for SQLPrimaryKeys() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.procedurecolumns(catalog=None, schema=None, proc=None, column=None)

	Return a cursor containing the columns for procedures in the catalog
filtered by the parameters catalog, schema, proc and column as desired. See
the ODBC API reference for SQLProcedureColumns() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.procedures(catalog=None, schema=None, proc=None)

	Return a cursor containing the procedures in the catalog filtered by the
parameters catalog, schema and proc as desired. See the ODBC API reference
for SQLProcedures() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.rollback()

	Rollback any pending transactions.

	
Connection.tableprivileges(catalog=None, schema=None, table=None)

	Return a cursor containing the privileges for tables in the catalog filtered
by the parameters catalog, schema and table as desired. See the ODBC API
reference for SQLTablePrivileges() for more information.

Note

This method is an extension to the DB API definition.

	
Connection.tables(catalog=None, schema=None, table=None)

	Return a cursor containing the tables in the catalog filtered by the
parameters catalog, schema and table as desired. See the ODBC API reference
for SQLTables() for more information.

Note

This method is an extension to the DB API definition.

Cursor Object

	
Cursor.arraysize

	This read-write attribute specifies the number of rows to fetch at a time
internally and is the default number of rows to fetch with the
fetchmany() call. It defaults to 1 meaning to fetch a
single row at a time. Note that this attribute can drastically affect the
performance of a query since it directly affects the number of network round
trips that need to be performed.

	
Cursor.bindarraysize

	This read-write attribute specifies the number of rows to bind at a time and
is used when creating variables via setinputsizes(). It
defaults to 1 meaning to bind a single row at a time.

Note

The DB API definition does not define this attribute.

	
Cursor.callfunc(name, return_type, * args)

	Call a function with the given name. Parameters may also be passed as a
single list or tuple to conform to the DB API. The return type is specified
in the same notation as is required by setinputsizes(). The
result of the call is the return value of the function.

Note

The DB API definition does not define this method.

	
Cursor.callproc(name, * args)

	Call a procedure with the given name. Parameters may also be passed as a
single list or tuple to conform to the DB API. The result of the call is a
modified copy of the input sequence. Input parameters are left untouched;
output and input/output parameters are replaced with possibly new values.

	
Cursor.close()

	Close the cursor now, rather than whenever __del__ is called. The cursor
will be unusable from this point forward; an Error exception will be raised
if any operation is attempted with the cursor.

	
Cursor.connection

	This read-only attribute returns a reference to the connection object on
which the cursor was created.

Note

This attribute is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.description

	This read-only attribute is a sequence of 7-item sequences. Each of these
sequences contains information describing one result column: (name, type,
display_size, internal_size, precision, scale, null_ok). This attribute will
be None for operations that do not return rows or if the cursor has not had
an operation invoked via the execute() method yet.

The type will be one of the database type objects (Database Types) and is
comparable to the type objects defined by the DB API.

	
Cursor.execdirect(statement)

	Execute a statement against the database using SQLExecDirect instead of
SQLExecute. This is necessary in some situations due to bugs in ODBC drivers
such as exhibited by the SQL Server ODBC driver when calling certain stored
procedures.

If the statement is a query, the cursor is returned as a convenience since
cursors implement the iterator protocol and there is thus no need to call
one of the appropriate fetch methods; otherwise None is returned.

Note

The DB API definition does not define this method.

	
Cursor.execute(statement, * args)

	Execute a statement against the database. Paramters may also be passed as a
single list or tuple to conform to the DB API.

A reference to the statement will be retained by the cursor. If None or the
same string object is passed in again, the cursor will execute that
statement again without performing a prepare or rebinding and redefining.
This is most effective for algorithms where the same statement is used, but
different parameters are bound to it (many times).

For maximum efficiency when reusing an statement, it is best to use the
setinputsizes() method to specify the parameter types and
sizes ahead of time; in particular, None is assumed to be a string of length
1 so any values that are later bound as numbers or dates will raise a
TypeError exception.

If the statement is a query, the cursor is returned as a convenience since
cursors implement the iterator protocol and there is thus no need to call
one of the appropriate fetch methods; otherwise None is returned.

Note

The DB API definition does not define the return value of this method.

	
Cursor.executemany(statement, parameters)

	Prepare a statement for execution against a database and then execute it
against all parameter sequences found in the sequence parameters. The
statement is managed in the same way as the execute() method
manages it.

	
Cursor.fetchall()

	Fetch all (remaining) rows of a query result, returning them as a list of
tuples. An empty list is returned if no more rows are available. Note that
the cursor’s arraysize attribute can affect the performance of this
operation, as internally reads from the database are done in batches
corresponding to the arraysize.

An exception is raised if the previous call to execute() did not produce any
result set or no call was issued yet.

	
Cursor.fetchmany([num_rows=cursor.arraysize])

	Fetch the next set of rows of a query result, returning a list of tuples. An
empty list is returned if no more rows are available. Note that the cursor’s
arraysize attribute can affect the performance of this operation.

The number of rows to fetch is specified by the parameter. If it is not
given, the cursor’s arrysize attribute determines the number of rows to be
fetched. If the number of rows available to be fetched is fewer than the
amount requested, fewer rows will be returned.

An exception is raised if the previous call to execute() did not produce any
result set or no call was issued yet.

	
Cursor.fetchone()

	Fetch the next row of a query result set, returning a single tuple or None
when no more data is available.

An exception is raised if the previous call to execute() did not produce any
result set or no call was issued yet.

	
Cursor.inputtypehandler

	This read-write attribute specifies a method called for each value that is
bound to a statement executed by this cursor, and overrides the attribute
with the same name on the connection if specified. The method signature is
handler(cursor, value, arraysize) and the return value is expected to be a
variable object or None in which case a default variable object will be
created. If this attribute is None, the value of the attribute with the
same name on the connection is used.

Note

This attribute is an extension to the DB API definition.

	
Cursor.__iter__()

	Returns the cursor itself to be used as an iterator.

Note

This method is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.name

	This read-write attribute returns the name associated with the cursor. This
name is used in positioned update or delete statements (as in delete from X
where current of <NAME>).

Note

This attribute is an extension to the DB API definition.

	
Cursor.next()

	Fetch the next row of a query result set, using the same semantics as the
method fetchone().

Note

This method is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.nextset()

	Make the cursor skip to the next available set, discarding any remaining
row from the current set. If there are no more sets, None is returned;
otherwise, the cursor itself is returned as a convenience for fetching data
from it. Note that not all databases support the concept of multiple result
sets.

	
Cursor.outputtypehandler

	This read-write attribute specifies a method called for each value that is
to be fetched from this cursor and overrides the attribute with the same
name on the connection if specified. The method signature is
handler(cursor, name, defaultType, length, scale) and the return value is
expected to be a variable object or None in which case a default variable
object will be created. If this attribute is None, the value of the
attribute with the same name on the connection is used.

Note

This attribute is an extension to the DB API definition.

	
Cursor.prepare(statement)

	This can be used before a call to execute() to define the statement that
will be executed. When this is done, the prepare phase will not be performed
when the call to execute() is made with None or the same string object as
the statement.

Note

The DB API definition does not define this method.

	
Cursor.rowcount

	This read-only attribute specifies the number of rows that have currently
been fetched from the cursor (for select statements) or that have been
affected by the operation (for insert, update and delete statements).

	
Cursor.rowfactory

	This read-write attribute specifies a method to call for each row that is
retrieved from the database. Ordinarily a tuple is returned for each row but
if this attribute is set, the method is called with the argument tuple that
would normally be returned and the result of the method is returned instead.

Note

The DB API definition does not define this attribute.

	
Cursor.setinputsizes(* args)

	This can be used before a call to execute() to predefine memory areas for
the operation’s parameters. Each parameter should be a type object
corresponding to the input that will be used or it should be an integer
specifying the maximum length of a string parameter. The singleton None can
be used as a parameter to indicate that no space should be reserved for that
position. Note that in order to conform to the DB API, passing a single
argument which is a list or tuple will treat that list or tuple as the
arguments sequence.

	
Cursor.setoutputsize(size[, column])

	This can be used before a call to execute() to predefine memory areas for
the long columns that will be fetched. The column is specified as an index
into the result sequence. Not specifying the column will set the default
size for all large columns in the cursor.

	
Cursor.statement

	This read-only attribute provides the string object that was previously
prepared with prepare() or executed with execute().

Note

The DB API definition does not define this attribute.

	
Cursor.var(type, size=0, scale=0, arraysize=1, inconverter=None, outconverter=None, input=True, output=False)

	Create a variable associated with the cursor of the given type and
characteristics and return a variable object (Variable Objects). If the
arraysize is not specified, the bind array size (usually 1) is used. The
inconverter and outconverter specify methods used for converting values
to/from the database. More information can be found in the section on
variable objects.

This method was designed for use with in/out variables where the length or
type cannot be determined automatically from the Python object passed in or
for use in input and output type handlers defined on cursors or connections.

Note

The DB API definition does not define this method.

Variable Objects

Note

The DB API definition does not define this object.

	
Variable.buffer_size

	This read-only attribute returns the size of the buffer allocated for each
element.

	
Variable.getvalue([pos=0])

	Return the value at the given position in the variable.

	
Variable.inconverter

	This read-write attribute specifies the method used to convert data from
Python to the database. The method signature is converter(value) and the
expected return value is the value to bind to the database. If this
attribute is None, the value is bound directly without any conversion.

	
Variable.input

	This read-write attribute specifies whether the variable is used as an input
variable and should normally be left as True.

	
Variable.num_elements

	This read-only attribute returns the number of elements allocated.

	
Variable.outconverter

	This read-write attribute specifies the method used to convert data from
from the database to Python. The method signature is converter(value) and
the expected return value is the value to return to Python. If this
attribute is None, the value is returned directly without any conversion.

	
Variable.output

	This read-write attribute specifies whether the variable is used as an
output variable. It should normally be left as False except when calling
stored procedures with output variables.

	
Variable.scale

	This read-only attribute returns the scale of the variable.

	
Variable.setvalue(pos, value)

	Set the value at the given position in the variable.

	
Variable.size

	This read-only attribute returns the size of the variable.

	
Variable.type

	This read-only attribute returns the type of the variable.

Release notes

3.x releases

Version 3.1

	Dropped support for Python 3.6. Support is now for Python 3.7 and higher.

	Added support for listing the available data sources and drivers
(issue 8 [https://github.com/anthony-tuininga/ceODBC/issues/8]).

	Added support for the CHAR data type
(issue 9 [https://github.com/anthony-tuininga/ceODBC/issues/9]).

	Restored support for boolean columns.

	Adjust builds to use pyproject.toml exclusively. Binary packages are built
using cibuildwheel.

Version 3.0

	Dropped support for Python 2. Support is now for Python 3.6 and higher.

	Migrated module to a Python package with the use of Cython for speedups.

	Migrated test suite to using tox in order to automate testing of different
environments.

	Added input and output type handlers on cursors and connections. This
enables the default types to be overridden if desired. See the
documentation for more details.

	Added better support for 64-bit Python.

	Eliminated compiler warnings; other minor tweaks to improve error handling.

	Dropped attribute ceODBC.buildtime.

	Dropped use of cx_Logging for logging.

Older versions

Version 2.0.1

	Removed memory leak that occurred when binding parameters to a cursor;
thanks to Robert Ritchie and Don Reid for discovering this.

	Remove the password from the DSN in order to eliminate potential security
leaks.

	Improve performance when logging is disabled or not at level DEBUG by
avoiding the entire attempt to log bind variable values.

	Use the size value rather than the length value when defining result set
variables since the length value is for the length of the column name;
thanks to Heran Quan for the patch.

	Added support for Python 3.2.

Version 2.0

	Added support for Python 3.x and Unicode.

	Added support for 64-bit Python installations.

	Added test suites for MySQL, PostgreSQL and SQL Server.

	Added support for cursor nextset().

	Added support for cursor execdirect() which calls SQLExecDirect() instead
of SQLExecute() which can be necessary in order to work around bugs in
various ODBC drivers.

	Added support for creating variables and for specifying input and output
converters as in cx_Oracle.

	Added support for deferred type assignment for cursor executemany() as in
cx_Oracle.

	Fixed a number of bugs found by testing against various ODBC drivers.

Version 1.2

	Added support for time data as requested by Dmitry Solitsky.

	Added support for Python 2.4 as requested by Lukasz Szybalski.

	Added support for setting the autocommit flag in the connection constructor
since some drivers do not support transactions and raise a “driver not
capable” exception if any attempt is made to turn autocommit off; thanks to
Carl Karsten for working with me to resolve this problem.

	Added support for calculating the size and display size of columns in the
description attribute of cursors as requested by Carl Karsten.

	Use SQLFreeHandle() rather than SQLCloseCursor() since closing a cursor in
the ODBC sense is not the same as closing a cursor in the DB API sense and
caused strange exceptions to occur if no query was executed before calling
cursor.close().

	Added additional documentation to README.txt as requested by Lukasz
Szybalski.

	Tweaked setup script and associated configuration files to make it easier
to build and distribute; better support for building with cx_Logging if
desired.

Version 1.1

	Added support for determining the columns, column privileges, foreign keys,
primary keys, procedures, procedure columns, tables and table privileges
available in the catalog as requested by Dmitry Selitsky.

	Added support for getting/setting the autocommit flag for connections.

	Added support for getting/setting the cursor name which is useful for
performing positioned updates and deletes (as in delete from X where
current of cursorname).

	Explicitly set end of rows when SQL_NO_DATA is returned from SQLFetch() as
some drivers do not properly set the number of rows fetched.

License

LICENSE AGREEMENT FOR ceODBC
Copyright © 2007-2021, Anthony Tuininga. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions, and the disclaimer that follows.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the names of the copyright holders nor the names of any contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 ceODBC	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__enter__() (Connection method)

 	__exit__() (Connection method)

 	
 	__iter__() (Cursor method)

 	__version__ (in module ceODBC)

A

 	
 	apilevel (in module ceODBC)

 	
 	arraysize (Cursor attribute)

 	autocommit (Connection attribute)

B

 	
 	BINARY (in module ceODBC)

 	Binary() (in module ceODBC)

 	
 	bindarraysize (Cursor attribute)

 	buffer_size (Variable attribute)

C

 	
 	callfunc() (Cursor method)

 	callproc() (Cursor method)

 	ceODBC (module)

 	close() (Connection method)

 	(Cursor method)

 	columnprivileges() (Connection method)

 	columns() (Connection method)

 	
 	commit() (Connection method)

 	connect() (in module ceODBC)

 	connection (Cursor attribute)

 	Connection() (in module ceODBC)

 	cursor() (Connection method)

 	Cursor() (in module ceODBC)

 	Cursor.description (built-in variable)

 	Cursor.name (built-in variable)

D

 	
 	data_sources() (in module ceODBC)

 	DatabaseError

 	DataError

 	Date() (in module ceODBC)

 	DateFromTicks() (in module ceODBC)

 	DATETIME (in module ceODBC)

 	DB_TYPE_BIGINT (in module ceODBC)

 	DB_TYPE_BINARY (in module ceODBC)

 	DB_TYPE_BIT (in module ceODBC)

 	DB_TYPE_DATE (in module ceODBC)

 	
 	DB_TYPE_DECIMAL (in module ceODBC)

 	DB_TYPE_DOUBLE (in module ceODBC)

 	DB_TYPE_INT (in module ceODBC)

 	DB_TYPE_LONG_BINARY (in module ceODBC)

 	DB_TYPE_LONG_STRING (in module ceODBC)

 	DB_TYPE_STRING (in module ceODBC)

 	DB_TYPE_TIME (in module ceODBC)

 	DB_TYPE_TIMESTAMP (in module ceODBC)

 	drivers() (in module ceODBC)

 	dsn (Connection attribute)

E

 	
 	Error

 	execdirect() (Cursor method)

 	
 	execute() (Cursor method)

 	executemany() (Cursor method)

F

 	
 	fetchall() (Cursor method)

 	fetchmany() (Cursor method)

 	
 	fetchone() (Cursor method)

 	foreignkeys() (Connection method)

G

 	
 	getvalue() (Variable method)

I

 	
 	inconverter (Variable attribute)

 	input (Variable attribute)

 	inputtypehandler (Connection attribute)

 	(Cursor attribute)

 	
 	IntegrityError

 	InterfaceError

 	InternalError

N

 	
 	next() (Cursor method)

 	nextset() (Cursor method)

 	
 	NotSupportedError

 	num_elements (Variable attribute)

 	NUMBER (in module ceODBC)

O

 	
 	OperationalError

 	outconverter (Variable attribute)

 	
 	output (Variable attribute)

 	outputtypehandler (Connection attribute)

 	(Cursor attribute)

P

 	
 	paramstyle (in module ceODBC)

 	prepare() (Cursor method)

 	primarykeys() (Connection method)

 	
 	procedurecolumns() (Connection method)

 	procedures() (Connection method)

 	ProgrammingError

R

 	
 	rollback() (Connection method)

 	rowcount (Cursor attribute)

 	
 	rowfactory (Cursor attribute)

 	ROWID (in module ceODBC)

S

 	
 	scale (Variable attribute)

 	setinputsizes() (Cursor method)

 	setoutputsize() (Cursor method)

 	
 	setvalue() (Variable method)

 	size (Variable attribute)

 	statement (Cursor attribute)

 	STRING (in module ceODBC)

T

 	
 	tableprivileges() (Connection method)

 	tables() (Connection method)

 	threadsafety (in module ceODBC)

 	Time() (in module ceODBC)

 	
 	TimeFromTicks() (in module ceODBC)

 	Timestamp() (in module ceODBC)

 	TimestampFromTicks() (in module ceODBC)

 	type (Variable attribute)

V

 	
 	var() (Cursor method)

W

 	
 	Warning

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to ceODBC’s documentation!

 		
 Module Interface

 		
 Constants

 		
 Exceptions

 		
 Database Types

 		
 Connection Object

 		
 Cursor Object

 		
 Variable Objects

 		
 Release notes

 		
 3.x releases

 		
 Version 3.1

 		
 Version 3.0

 		
 Older versions

 		
 Version 2.0.1

 		
 Version 2.0

 		
 Version 1.2

 		
 Version 1.1

 		
 License

_static/up-pressed.png

_static/up.png

